
 
 

 

 
Forests 2024, 15, 803. https://doi.org/10.3390/f15050803 www.mdpi.com/journal/forests 

Article 

The Significance of Tree Height as a Predictor of Tree Mortality 
during Bark Beetle Outbreaks in a Small Catchment 
Susanne I. Schmidt 1,*, Hana Fluksová 2, Stanislav Grill 2,3 and Jiří Kopáček 4 

1 Department of Lake Research, Helmholtz Centre for Environmental Research, 39114 Magdeburg, Germany 
2 Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic;  

fluksovah@centrum.cz (H.F.); sgrill@prf.jcu.cz (S.G.) 
3 Department of Geoinformatics, Faculty of Science, Palacky University, 17. Listopadu 50,  

77146 Olomouc, Czech Republic 
4 Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005 České Budějovice, Czech Republic; 

jiri.kopacek@hbu.cas.cz 
* Correspondence: susanne.i.schmidt@ufz.de 

Abstract: Bark beetle outbreaks damage forests and kill trees worldwide, but many aspects of their 
dynamics remain unexplained. Our aim was to identify predictors for individual tree deaths within 
the small (0.7 km2) Plešné Lake catchment in the Šumava National Park in southwestern Czechia. 
Within this area, >60,000 trees were geo-referenced and categorized from ten aerial images (20 cm 
spatial resolution) between 2000 and 2015. For each year for which aerial images were available, we 
calculated tree densities of different categories and diameters. Tree height was evaluated by means 
of LiDAR in two terrestrial campaigns (2010 and 2011). A machine learning technique was then used 
to evaluate the most important variables. The resulting relationships were largely nonlinear and 
differed among years; however, individual trait tree height proved to be the most influential variable 
in each year. Higher trees were more likely to have died during either the undisturbed phase (2000 
and 2003), the disturbed phase (2005–2011), or the recovery phase (2013). Our results indicate that 
salvage logging may not be the most effective measure for protecting trees in small catchments. 

Keywords: bark beetle attack; individual scale; site scale; stand scale; terrestrial LiDAR; tree height; 
remote sensing; Ips typographus 
 

1. Introduction 
Bark beetle outbreaks damage forests worldwide, but recent large-scale bark beetle 

outbreaks have shown patterns that are heterogeneous on several scales. Although recent 
empirical [1] and modelling studies [2–4] have significantly advanced our understanding, 
knowledge gaps remain. For example, processes leading to the collapse of bark beetle 
outbreaks occur on scales from less than three meters to several kilometers, but whether 
the same factors are decisive on all scales is not yet known. Effects from these different 
scales might act in the same or opposite directions [5,6]. Past studies either focused on 
small patches where all trees were characterized, or on larger areas where trees were only 
roughly characterized. Our objective was to provide a more detailed picture and follow 
forest damage on an individual tree basis throughout an entire catchment. 

1.1. Bark Beetle Behavior—Endemic and Epidemic Phases 
Depending on the bark beetle species, bark beetles behave differently in endemic and 

epidemic phases. In endemic phases, most bark beetles only colonize dead trees [7,8] and 
are attracted through the volatiles such trees exude [9]. These dead trees then become 
nuclei for further infestations. In parallel, storm events lead to trees first being uprooted, 
then dying, and exuding volatiles. In this way, storm events often trigger bark beetle 
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attacks of damaged forests. Most bark beetles’ behavior in the endemic phases is better 
described by primary attraction by such dead trees than by random orientation [10]. In 
contrast, in epidemic phases, when the density of dead and damaged trees increases, e.g., 
after wind fells, bark beetles may enter epidemic phases and start “mass attacks” [11]: they 
attract congeners to the same tree as well as to healthy trees by emitting aggregation pher-
omones [7,8]. A positive relationship between the volume of dead broken trees, e.g., by 
wind and storms, and the proportion of standing trees being infested has been described 
[12]. While healthy trees with low susceptibility are generally not infested in endemic 
phases, they may be infested during epidemic phases, when there are mass attacks by 
large populations [13]. Ips typographus, the species responsible for most spruce tree dam-
age in Central Europe [14], is most often univoltine (i.e., the beetles have only one gener-
ation, and fly to the next host only once per year) and thus, each female infests only one 
tree per year. Thus, the propagation of a bark beetle attack is spatially limited in time in 
both endemic and epidemic phases. Due to climate change, however, an increasing num-
ber of multivoltine populations have been observed [15]. 

1.2. Spatial Spread of Bark Beetles 
The spatial spread of bark beetles has been studied in different areas and with differ-

ing focus. For example, univariate statistical models have been constructed based on the 
mapping of storm damage and subsequent bark beetle damage, assessing damage in a 
small area over time. One study found a clear relationship between tree damage and in-
fested trees, but the smallest distance tested was 100 m [15]. In another study [7], the col-
onization of bark-beetle-damaged trees was correlated with storm gaps within 2000 m 
(distances between 500 m and 2000 m were tested). Yet another study found that 66% of 
attacks occurred within 100 m of a source, and 100% within 500 m [16]. These results are 
in line with a summary of earlier studies [17], showing that only about a third of a popu-
lation is caught by pheromone traps while the other two thirds travel farther. Wichmann 
and Ravn [18] found that in an endemic situation, 50% of a local population seemed to 
propagate as far as 500 m. In contrast, in an epidemic situation, the same study found 80% 
of new attacks occurring within 250 m of an older attack [18]. However, distances smaller 
than 100 m have rarely been tested, and it is unknown whether there are also differences 
between epidemic and endemic phases at scales < 100 m. Remote sensing has been em-
ployed to derive data on individual trees to help address this issue, but databases are 
generally limited to just a couple thousand trees [19]. In the catchment studied here, a data 
set of >60,000 trees, observed over 10 distinct years [20], allowed us to tackle the question 
of the importance of small scale while comparing a larger number of trees at a wide range 
of distances. 

1.3. Scales in Bark Beetle Attacks 
When studying insect outbreaks, approximately four scales have been considered 

important. Conventionally, the regional or catchment scale encompasses one to several 
square kilometers [21]. The stand scale usually is formulated to act within about a 200 m 
radius, representing a homogeneous tree composition [22,23]. The plot or site scale is 
smaller, and characterized by small-scale elevation, slope, and microclimate conditions, 
and encompasses less than a 50 m radius [24]. Lastly, some individual properties such as 
diameter at breast height (DBH), tree health, and tree height, are also relevant. While some 
individual tree properties can be derived via remote sensing, there are several limitations 
to the various methods. Very high-resolution (VHR) remote sensing data such as IKONOS 
(or aerial cameras with very high-resolution sensors) can be used in classification tools 
such as random forests, and can be trained to recognize individual trees and even species. 
However, their calibration requires extensive reference data that are rarely available. 
Thus, they are not generally calibrated [25], and there are only few published accounts of 
using VHR for evaluating tree state. Thus, individual tree health is usually not studied 
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beyond the scale of plots of a few square meters, because larger scales would encompass 
immense time requirements. 

Many factors on the large, i.e., regional or catchment, scale rendering trees vulnerable 
to insect attacks have been discussed in the literature. The most obvious ones are the dis-
tance to the closest damage, i.e., to breeding grounds for bark beetles, and the biogeo-
graphic and climatic conditions, due to geography and large-scale elevation conditions. 
On the stand scale, the density of conifers in mixed forests, i.e., the density of potential 
stepping stones, even if not attacked themselves [26], the average age of stands, and gen-
eral stand health, have all been shown to be critical. Changes to microbial communities 
around and in roots [27] and mycorrhiza that might have been shared prior to the attack 
might be also play a role, altering nutrient flow among and to trees [28]. On the site scale, 
elevation, the exposure of trees in terms of slope and thus wind [15], or solar radiation 
([29]; see also below), are important. On the individual scale, factors such as tree age (bark 
beetles attack rather mature than younger trees; [30]) and tree stress, e.g., from high ele-
vation [31] or drought [32,33], have been found to be key. Also, trees with intermediate 
crown density have been found to be most affected by bark beetles [30]. 

The site scale factor of elevation affects tree vulnerability in several additional im-
portant ways. First, elevation structures plant communities because of the exposure to the 
wind and precipitation. At the highest elevations of a catchment, exposure to wind, tem-
perature, and subsequently evaporation [34] can be assumed to be highest, posing the 
highest stress to vegetation within the catchment [15]. Norway spruce is adapted to such 
conditions, and low temperatures limit bark beetle developments. However, forests in the 
surroundings of our site are still in the process of recovering from the major disturbance 
of acid rain that culminated in the late 1980s [35–37]. Before the most recent bark beetle 
outbreaks, many mountain peaks had already been bare for decades, partly due to the fact 
that acid rain particularly impacted the highest elevations, and partly as a result of ensu-
ing management. The combination of these factors at the highest elevations in the catch-
ment studied here may have rendered the trees particularly prone to repeated insect in-
festations. 

1.4. Bark Beetles in the Bohemian Forest 
The Bohemian Forest, which lies across the Czech–German–Austrian border region 

and includes the Šumava National Park on the Czech side, has experienced several severe 
windthrows and bark beetle outbreaks in its recent history These have affected both ac-
tively managed forests and those strictly protected in non-intervention zones [37], but not 
at the same time and not to the same severity. The most recent large outbreak was trig-
gered by windstorm Kyrill in 2007, affecting ca. six thousand hectares of mature mountain 
spruce forest [38]. This event initiated heated discussions about the management of wind-
felled areas, which may act as a source of bark beetles, putting surrounding forests at risk 
[1], but also representing important biodiversity hot-spots with positive effects on land-
scape heterogeneity and recovery [39]. This event also initiated a new wave of interest in 
bark beetle ecology and population dynamics, which was also fueled by the increasing 
outbreak risk due to climate change [14,40]. 

1.5. Hypotheses 
We hypothesized that there would be differences in the predictors that would best 

determine the likelihood of a tree dying during various bark beetle outbreak phases. More 
precisely, we hypothesized that (1) the importance of factors at different scales (individual 
site, stand, or regional) would change during the outbreak in the Plešné Lake catchment. 
We tested whether (2) the site scale was more important than the other scales during the 
transition from the endemic to epidemic phase in the area, and thus whether the site scale 
could pre-determine tree survival or dieback. In addition, we tested whether (3) there 
were important site-scale effects, especially effects from the density of healthy trees in 
close proximity of an attacked tree. Our expectation was that neighboring healthy trees 
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might potentially protect an attacked tree due to, e.g., shared mycorrhiza before the epi-
demic phase, while dense stands of healthy trees might attract bark beetles during the 
epidemic phase. Thus, site-scale effects might play different roles in different outbreak 
phases. 

2. Materials and Methods 
2.1. Study Site 

The Plešné Lake catchment (0.71 km2) is situated between 13.854 °E and 13.868 °E, 
and 48.770° N and 48.778° N, at altitudes of 1086 to 1378 m above sea level (Figure 1). The 
catchment was covered by a primeval conifer forest, strictly protected as a part of the 
Šumava National Park. The land use classification is 100% forest [41]. About 90% of the 
catchment was covered by predominantly mature Norway spruce (Picea abies (L.) Karst.) 
until a bark beetle (Ips typographus L.) outbreak from 2004 to 2008, which led to the death 
of 75% of the trees [20]. Since then, the forest has increasingly consisted of birch (Betula 
pubescens Ehrh. and B. pendula L.), rowan (Sorbus aucuparia L.), and European beech (Fagus 
sylvatica L.), in addition to a large number of spruce seedlings [36]. Apart from the dec-
ades-lasting acidic deposition, anthropogenic impacts have been negligible in the Plešné 
catchment.  

 
Figure 1. (A) Plešné Lake catchment with outline of the catchment (black), contour lines (brown), 
and the lake itself (blue). (B) Location of the studied catchment A within the Czech Republic. 

The catchment bedrock is formed by granite [41]. The soils are mostly sandy (75%), 
low in clay content (2%), and include shallow leptosols (38%), podsols (29%), and dystric 
cambisols (27%), with an average soil depth of 33 cm; the remaining ground surface is 
bare rock (5%) and wetland (1%) [42]. Annual average air temperature in the Plešné catch-
ment from 2004 to 2017 averaged 3–6 °C [36]. Precipitation averages ~1300 mm annually 
[43].  

2.2. Elevation, Aspect, and Slope Data 
The fourth-generation digital elevation model (DEM) was obtained from the Land 

Survey Office, Prague, Czech Republic (64110-DMR 4G SM 5 (2.5 × 2 km); accessible at 
www.geoportal.cuzk.cz (accessed on 15 February 2018); metadata webpage https://geo-
portal.cuzk.cz/(S(2uc3e2sw25prlc3tbf503ezx))/Default.aspx?lng=EN&mode=Text-
Meta&side=vyskopis&metadataID=CZ-CUZK-DMR4G-V&mapid=8&menu=301 (ac-
cessed on 15 February 2018)). The elevations of trees were extracted from the raster map 
built based on this text file. Slope and aspect were calculated in ArcGIS Desktop 10.8 based 
on DEM. 
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2.3. Tree Mapping and Characteristics 
Trees were mapped in a geodatabase, similar to previously published approaches. In 

the first approach, attacked trees were mapped as a layer of points, and areas with wind-
thrown trees, mapped by the forest managers, as single layer polygons [18]. The second 
approach used a LiDAR-derived digital surface model (DSM) to evaluate the canopy 
height and to differentiate standing from lying trees [38]. 

Aerial color images covering the Plešné Lake catchment had been captured by 
manned aircraft and georeferenced by GEOREAL spol. s r.o., Plzeň, Czech Republic. The 
aerial imagery had a 20 cm spatial resolution. This imagery covered the visible part of the 
spectrum (380–750 nm) with a measuring camera. Images were photogrammetrically ad-
justed for the orthophoto map. 

In this study, one aerial image per year from the years 2000, 2003, 2005, 2007, 2008, 
2009, 2010, 2011, 2013, and 2015 was manually digitized as described by Fluksová et al. 
[20], covering the full cycle of an outbreak, from endemic to epidemic and back to endemic 
phase [20]. Each tree’s position was georeferenced in a GIS layer “tree stand”, and the tree 
state or condition was individually noted. The category of the tree condition was assigned 
from changes in crown color. Shades of green in the aerial image were classified as 
“healthy”, unaffected (Table 1). Dead (or dying) trees (affected) were those that appeared 
as orange, brown, grey, or white. Dead trees were first “standing”, or later “lying”. Where 
a dead lying tree was degraded, only a “stump” may have remained. Trees that appeared 
for the first time were categorized as a “sapling” or “seedling”, and attributed a height of 
0 m. When the crown diameter of such a tree exceeded two meters, it was moved to the 
category “young healthy tree” (Table 1). The year in which a tree was first classified as 
either class 4 or 5 (i.e., as dead) was attributed to the tree as the year of death. Tree digiti-
zation and categorization were performed by one person (H.F.) for all images according 
to the described methodology. While somewhat subjective, the appraisals were consistent 
throughout the data set. 

Table 1. Classification of trees in the geodatabase. 

Class Explanation 

0 future point—there is nothing there at the time of observation, but there will 
be a sapling/seedling in a later year 

1 tall healthy 
2 small healthy 
3 sapling, seedling 
4 tall dead 
5 small dead 
6 tree stump 

Tree heights were extracted from LiDAR data for all trees (except for saplings) using 
the method of local maxima for height estimation [44] (further details below). The terres-
trial LiDAR ground surface data (laser point cloud) were taken in 2010 and 2011 by 
GEOREAL spol. s r.o. In 2010, the data were taken from the lake dam and in 2011, from 
the trail leading to the ridge. The main steps of the procedure are shown in Figure 2 and 
are further explained in Supplementary Information, Part B.1. 
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Aerial photographs captured by
GEOREAL spol. s r.o., Plzeň, Czech 
Republic

- years 2000, 2003, 2005, 
2007, 2008, 2009, 2010, 
2011, 2013
- resolution 20 cm
- photogrammetrically
adjusted to the orthophoto
map

The 4th generation digital elevation
model DEM (64110-DMR 4G SM 5 
(2.5x2 km); www.geoportal.cuzk.cz; 
Land Survey Office, Prague, Czech 
Republic

GIS layer tree geodatabase “tree
stand” 

- manual vectorization based
on aerial photographs
- state of each tree
- year of tree death
- individual tree elevation
- tree height from LiDAR

LiDAR (terrestrial)
- imaging density of 2 points/m, 
pixel size 20 cm, with the pixel
value corresponding to the local
maximum of the points
within a given pixel
- final DEM thus spatial
resolution of 0.2 m
- extraction of tree heights

LiDAR (terrestrial)
- visually corrected by
using digital aerial ima-
ges from Argus 
GeoSystem Ltd. (Hradec 
Králové, Czech Repub-
lic); scale 1:7000; spatial
resolution of 0.2 m

GIS layer
tree geo-
database
“tree
height” for
11711 trees

GIS raster
“tree heights
interpolated
raster”; 
remaining
trees
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Figure 2. Procedure to derive the GIS geodatabase “tree stand” from terrestrial LiDAR data, and the 
shapefile “tree height” and the raster “tree height-interpolated raster”, both derived from the cor-
rected LiDAR data. 

A visual correction of the calculated DEM was performed as follows (see Supplemen-
tary Information, Part B.1 for details). Tree heights were derived from the first return of 
the LiDAR point as an elevation (height) for the top of a tree. Circular crown projections 
for each individual surviving tree were manually derived from the local maximum raster. 
Centroids of the crown projections were converted to a point layer (“tree height” layer) 
with local maximum height values [44]. Trees from the LiDAR “tree height” layer were 
then matched to the closest trees in the “tree stand” layer (see Figure 2) and the height 
from LiDAR was added to each tree point in the “tree stand” layer. This resulted in 11,711 
tree heights matched. This approach thus used the transition parameter crown projection 
to find the corresponding points from the tree layer (i.e., orthophoto digitization) and from 
the elevation layer (derived from LiDAR). 

Height values for all trees that were not assigned a height from the “tree height” layer 
due to gaps in the LiDAR data were derived from an interpolated pixel value from these 
newly created rasters (“tree height-interpolated raster”). Buffers (polygons) were drawn 
around these non-assigned trees so that the polygons represented the crown of the tree. 
The maximum tree height from the appropriate “tree height-interpolated raster” within a 
buffer zone around these polygons was extracted and assigned to the respective tree point 
shape in the “tree height” geodatabase. 

Alive and dead standing trees were each categorized as either tall or small based on 
the tree height from LiDAR, with trees between 7 and 20 m in height categorized as small, 
and trees from 20 to 50 m as tall. This led to, e.g., a tall healthy tree being assigned to class 
1 (Table 1; [20]). Trees were further distinguished into deciduous or coniferous trees, based 
on crown appearance in the aerial image. For periods with missing aerial images 
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(Supplementary Information, Table S2), annual changes in tree categories were extrapo-
lated (SI, Table S3). We classified the tree data beginning with those of 2005 up to and 
including 2011, so as to represent an epidemic outbreak phase (Supplementary Infor-
mation, Figure S3). This was based on the combination of the tree counts of the various 
categories in Table S1, and the cFII index ([45]; Supplementary Information, Part B.2; Fig-
ure S3). 

The resulting geodatabase (shapefile) was then used for further calculations. The sum 
of newly dead trees in each aerial image is noted in Tables S1 and S2. We first created 
subsets of the complete database for time periods up until the respective year named (i.e., 
data set 2000 comprised trees present in 2000, to represent the period up until and includ-
ing 2000; data set 2003 comprised trees present in 2001–2003, etc.). In other words, for each 
such period, we excluded trees of category 0 (Table 1), which would only appear in later 
years (i.e., future sapling), and we excluded for each year those trees that were already 
marked dead in previous years (i.e., contained an entry in the “Year of Death” column in 
the shapefile table which was before or the same as the year of the respective data set), 
because we wanted to predict the death in a particular year (or period), and not whether 
a tree had already died previously. This resulted in data sets ranging from 14,214 trees for 
2011, when most old trees were already dead but not much regrowth had yet happened, 
up to 47,838 trees, mainly saplings, in 2015 ([20]; Table S1). 

2.4. Geostatistical Analysis—General approach to Spatial Scale Effects 
To address the hypothesis that small-scale factors determined a tree’s fate during the 

outbreak phase when bark beetles were already predominant in the area, we checked ef-
fects on different scales. We regarded the “tree height” (see above), longitude and latitude 
coordinates (abbreviated as “X” and “Y”), “leaf type” (either coniferous or deciduous), 
and year of “death” as variables on the individual scale (overview in Table 2). 

Table 2. Explanation of the abbreviations of predictors, here for 2003 as an example. 

Predictor Explanation 
Individual scale  

leaf type j = coniferous; l = deciduous 
Tre_hgh Tree height (m), estimated from LiDAR 
X X coordinate 
Y Y coordinate 
Death Year of death 
Site scale (including up to 30 m)  

pl9_s_1 Slope (°) 
plec_4g Elevation (m) 
pl3_a_t Aspect (°) 

FII_00, FII_03 
Raster cell value from the Forest Infrared Index (UHUL, 
pers. comm.) for the year 20xx, i.e., FII_00 for the year 
2000 

c1_30m_j, c2_30m_j, c3_30m_j, c4_30m_j, c5_30m_j, c6_30m_j, 
c1_30m_l, c2_30m_l, c3_30m_l, c4_30m_l, c5_30m_l, 
c6_30m_l, c1_10m_j, c2_10m_j, c3_10m_j, c4_10m_j, c5_10m_j, 
c6_10m_j, c1_10m_l, c2_10m_l, c3_10m_l, c4_10m_l, 
c5_10m_l, c6_10m_l, c1_5m_j, c2_5m_j, c3_5m_j, c4_5m_j, 
c5_5m_j, c6_5m_j, c1_5m_l, c2_5m_l, c3_5m_l, c4_5m_l, 
c5_3m_l, c6_3m_j, c1_3m_j, c2_3m_j, c3_3m_j, c4_3m_j, 
c5_3m_j, c1_3m_l, c2_3m_l, c3_3m_l, c4_3m_l, c5_3m_l, 
c6_3m_l, c1_30m, c2_30m, c3_30m, c4_30m, c5_30m, c6_30m, 
c1_10m, c2_10m, c3_10m, c4_10m, c5_10m, c6_10m, c1_5m, 

Count of trees of one of six categories (c1, …, c6) within 
a buffer zone of xx m; if applicable, belonging to tree 
“species” (l = deciduous; j = coniferous); e.g., “c1_30m_j” 
stands for the count of trees of category 1, i.e., tall, 
within 30 m, of “species” coniferous 
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c2_5m, c3_5m, c4_5m, c5_5m, c6_5m, c1_3m, c2_3m, c3_3m, 
c4_3m, c5_3m, c6_3m 
Stand scale (50–100 m)  

d_50_00, d_50_03, h_50_00, h_50_03, etc. 

Kernel Smoothing-estimated density of d = dead, or h = 
healthy trees within a raster cell of 50 m or 100 m, in the 
year 20xx; e.g., d_50_00 = estimated density of dead 
trees within a 50 m raster cell in the year 2000 

subbasn 

sub basin; geostatistically calculated; apart from the four
known inflows (see, e.g., Kopáček et al. [36]), two more 
inflows and their subcatchments were identified and 
used as a variable 

Regional scale (however, some distances turned out to be less than 30 m, i.e., rather site-scale level) 

d_ls_xx 
Distance to Czech Šumava National Park-listed dam-
ages in year 20xx; only available from year 2006 on-
wards 

dm_20xx 

Distance to damage in the five years up to 2000, or in the 
previous years since the last appraisal in the forest state 
geodatabase; e.g., dm_2000 = damage in the five previ-
ous years, i.e., 1996–2000; dm_2003 = damage in the 
years 2001–2003 according to Senf and Seidl [46,47] 
which is on a 30 m grain size scale 

On the site scale, i.e., within 30 m, slope, aspect (in degrees), and elevation were in-
cluded. The immediate surroundings of a tree encompass the directly neighboring trees, 
which we addressed by counting the trees from the Fluksová et al. [20] database within a 
three-, five-, ten-, or thirty-meter radius, to represent site-scale tree densities. We counted 
trees per category, to address the hypothesis that on the site scale, the density of trees of 
a certain category would be important, either protecting neighboring trees before the at-
tack, or attracting bark beetles during the epidemic phase. Apart from site-scale charac-
teristics in the Fluksová database, we also used UHUL’s forest health index FII of the re-
spective year as a predictor. 

We calculated rasters from the tree densities per area via Kernel Density Estimators 
(see below) to be able to build models with a % dead trees per area response. If a forest 
stand is described by its structure as being somewhat homogeneous in terms of—among 
others—species composition and tree density, then stand size in a topographically com-
plex area such as a catchment with a wide range of slopes and altitudes will range from a 
few meters to hundreds of meters in diameter (see Figure 1, and compare Moran’s I which 
is an index quantifying non-randomness in distribution, and thus spatial autocorrelation, 
in every year high spatial autocorrelation, Supplementary Information, Part A, Table S4; 
for the method see below). We decided to set the limit between the site and the stand scales 
at between 30 and 50 m, with 30 m here representing the upper limit of site-scale evalua-
tions, and 50 m here representing the lower limit of stand-scale evaluations. Therefore, we 
calculated extrapolating rasters from the tree database by Fluksová et al. [20] for 50 and 
100 m. A stand may well be larger than 100 m, but the tree database encompassed only a 
few meters beyond the catchment border, and larger raster cells at the edges of the catch-
ment would have had lower densities because not all counts were available, and would 
thus have distorted density values. 

For the distance to the closest windthrow, i.e., scales potentially larger than 100 m, 
representing the regional scale, we used two databases. The first consisted of polygons 
containing various detailed information, but covered only the Czech side (geodatabase 
“ZjistovaniStavLesa“ of the Šumava National Park administration, pers. comm.; this is an 
internally compiled long-term study of the Šumava National Park administration to 
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provide information about forest health for all sites within the National Park area in the 
aftermath of the devastating Kyrill windstorm and massive bark beetle outbreaks, etc.), 
and the second was a generalized raster data set based on yearly satellite imagery [46,47]. 
For an overview of the two regional data sources and comparisons with the Fluksová et 
al. [20] database, refer to Supplementary Materials, Part B.3, Figure S4, and for further 
details, see below. As can be gathered from Figure S4, some distances from trees to dam-
aged areas recorded in these two databases were in the end less than 30 m, i.e., rather site-
scale level than regional. 

In order to extract the tree count of a specific type (i.e., small healthy, dead adult, 
stump) within a given radius around a given tree, we used the command st_intersects() 
from the R package sf [48,49] for each year. We used four different radii: 3, 5, 10, and 30 m. 

2.5. Geostatistical Analysis—Spatial Kernel Density Smoothing to Calculated Stand Density 
from the Tree Database by Fluksová et al. [20] 

Spatial kernel density smoothing was performed using the command kde() in the R 
package SpatialKDE version 0.8.1 [50], with the setting kernel = “quartic”, to estimate 
stand density as a predictor for statistical analyses. Non-coniferous trees were excluded 
for this estimate, since they are not hosts for bark beetles and their state is thus unrelated 
at the scale at which we used the kernel density smoothing. For kernel density estimations, 
the band width is decisive. We calculated the appropriate band width using the command 
bw.smoothppp() in the R package “spatstat.core”, version 2.4-4 [51]. This is a nonpara-
metric test and performs least-squares cross-validation. The calculated band width was 
10.24. 

We chose cell sizes of 5, 50, and 100 m. The rasters with 5 m cell sizes were only used 
for plotting (Figure 3) and for calculating Moran’s I (see below), while the 50 and 100 m 
cell size rasters were used to represent two spatial resolutions of the stand scale. Kernel 
densities were then calculated separately for healthy trees, combining healthy tall and 
healthy small trees from the Fluksová et al. [20] database. For further details on the de-
rived geodatabase columns which are predictors as listed in Table 1, see Supplementary 
Information, Part B.1. For each year, the respective dead, newly dead, or healthy tree den-
sity in the kernel smoothed grid cell were extracted for each tree in the Fluksová et al. [20] 
database, using the command extract() from the “raster” R package [52]. The extracted 
values were attributed to the respective tree, and included in statistical treatment (see be-
low). 
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Figure 3. Maps of kernel-density-estimated tree deaths for each yearly snapshot in the geodatabase. 
Cell size 5 m. 
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2.6. Forest Damage on the Regional Sale—Czech Data Set of the Šumava National  
Park Administration 

For evaluating the distance to the nearest forest damage from which bark beetles 
could have come, we used the Šumava National Park administration polygon geodatabase 
mentioned above (pers. comm.). In this data set, polygons are distinguished into “sites 
with dry or drying standing trees”, “sites with dry lying trees”, “sites after incidental tree 
removal”, and “breaks and upheavals not resolved”. The sites after incidental removal are 
further distinguished into “sites with the removal of most of the wood”, and “sites leaving 
most or all of the wood mass to decay” (further explanations in Supplementary Infor-
mation part C). This geodatabase was only available from 2006 to 2021, thus, information 
for most years prior to the Kyrill storm (2007) was not available. We assumed that the 
“sites with dry or drying standing trees”, “sites with dry lying trees”, “sites leaving most 
or all of the wood mass to decay”, and “breaks and upheavals not resolved” were the most 
important as potential bark beetle breeding sites. Bark beetles usually only breed in the 
bark, so lying dead wood from which the bark was removed may not offer breeding 
grounds. “Not resolved” implies that the bark was left on the trees, and such dead wood 
might thus become a breeding ground. 

For each tree of the Fluksová et al. [20] database, we calculated the smallest distance 
to the nearest polygon of damage in the respective year, using the command st_distance() 
from the R package sf [48,49], assuming that each polygon included not only fresh dis-
turbances, but also legacy disturbances for the respective year. These data are only avail-
able from 2006 onwards. 

2.7. Forest Damage on the Regional Sale—European Scale 
Since the detailed data set from the Šumava National Park only covered the Czech 

area, and was only available from 2006 onwards, we also used the European scale data-
base by Senf and Seidl [46,47]. For more explanation, refer to Supplementary Information, 
Part B.3. 

In the final database, the smallest distance of each tree to the nearest damage central 
point for the respective year was calculated using distanceFromPoints() from the raster R 
package [52], resulting in the shapefile column “dm_year”, where “year” was the respec-
tive year for which the database provided an entry and which overlapped with the time 
period in the tree database. 

Both for the 50 and 100 m raster cell kernel smoothed rasters that had been based on 
the Fluksová et al. [20] database, and the rasters from the Senf and Seidl [46,47] data set 
which are on a 30 m grain, we also used rasters from the respective previous years or 
periods as predictors, because a disturbance might not act immediately. In order to keep 
the set of predictors to a minimum, and since the site scale should operate at shorter time 
periods, we used only the tree class counts (for the definition of the six tree state classes, 
refer to Table 1) within 3, 5, 10, and 30 m from the same year for the site-scale predictors.  

We compared the distances to the closest disturbance from the Šumava polygon ge-
odatabase with those from the database by Senf and Seidl [46,47] in Figure S5. The dis-
tances from the Šumava geodatabase were consistently smaller than those from Senf and 
Seidl [46,47], almost certainly due to the smaller size of some of the polygons in the Czech 
database. Both databases, however, consistently show that the distances to disturbances 
were the smallest in 2006–2008 (Figure S5). 

2.8. Statistical Treatment of the Results from Geostatistical Analyses 
2.8.1. Spatial Distribution 

To test the hypothesis on the random distribution of dead and living trees, we tested 
the autocorrelation of the year in which a tree died (“Year of death”, or “death” in short 
in the following tables and figures) with Moran’s I. 
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2.8.2. Gradient Boosting Machine (GBM) Predicting Tree Death 
We used the machine learning tool Gradient Boosting Machines (GBMs; [53]) for clas-

sifying the yearly outcome of an individual tree as either alive or dead, based on the var-
iables that were named or derived as above. Like random forests, GBMs build ensembles 
of trees, but have been found to be superior in some applications [54]. While random for-
ests build deep independent trees, GBMs build shallow trees and incrementally minimize 
the error term [55]. The trees are built sequentially, and each tree learns and improves on 
the previous one. Shallow trees by themselves are weak predictive models. However, in 
GBMs, they are “boosted” to produce a powerful “committee” [56]. GBMs, when appro-
priately tuned, are thus often hard to beat with other algorithms [57]. They deal with mul-
ticollinearity in the data [58], and when there are collinear variables, the tree takes one of 
them and the accuracy of the model stays the same no matter which of the collinear vari-
ables are used. In the variable importance calculations, they may achieve the same or sim-
ilar importance, and thus, it is important to not just focus on the most important predictor. 
This was demonstrated by using GAMs in the next step with all variables that had had a 
variable importance of at least four in any year (see Section 2.8.3 below). For calculating 
the GBMs, we used the command gbm() in the R package “gbm” v. 2.1.8.1 [59], setting the 
binomial distribution “huberized”, and narrowed down the respective settings with a grid 
search, as recommended in [60]. 

On this fine spatial scale, we focused on the interaction between coniferous and de-
ciduous trees and therefore included not only counts of coniferous trees, but also counts 
of deciduous trees and total counts of both deciduous and coniferous trees as predictors. 
All trees, including deciduous, are part of the ecosystem and stabilize the soil. A mixture 
of trees might prevent bark beetle attacks, which focus on dense stands of conifers [61]. 
To cross-check the general patterns of the GBM results, we also calculated random forest 
models, using the command “randomForest” of the R package “randomForest” v. 4.7-1.1, [62]. 

Following the GBM yearly analyses, we plotted the three most important variables 
that predicted tree deaths in variable importance plots as well as line plots to visualize the 
importance of the variance of all variables over time and to check whether the variable 
importance changed throughout the epidemic phases. Because the total number of pre-
dictors (111, see Table S5) is too high to visualize, we concentrated on those predictors that 
achieved a variable importance threshold of at least 4% in at least one year. Some colline-
arity between variables of similar character, i.e., between c1_5m and c1_3m, was expected. 
GBMs deal well with collinearity, as explained above, but it is possible that of two collin-
ear variables, one is attributed a high variable importance in one year, and the other in 
another year. Plotting all variables that passed our 4% threshold at least once allowed us 
to check whether such similar variables became interchanged among years. In such cases, 
both had to be regarded as important and the specific value of variable importance was 
less decisive. We thus used the individual-scale GBMs to narrow down the list of variables 
to be used for general additive models (GAMs) in the subsequent step. 

2.8.3. General Additive Models (GAMs) Predicting the Percent of Conifers Killed 
We chose the nonparametric spline fitting GAM method [63] for fitting models to 

show which variables predicted the percent kill rate (number of newly dead trees per sum 
of newly dead and healthy trees × 100) in the kernel-smoothing-derived rasters. While the 
GBMs were calculated on individual trees and models ran separately for each year, the 
GAMs were calculated on raster data, like in previous studies, and the response was the 
% of trees killed, not the individual tree’s survival. On this coarser spatial scale, we fo-
cused on coniferous trees only, since they are the ones succumbing to the bark beetle at-
tack. As described in the previous section, the variables used here as predictors were those 
that showed a variable importance of at least 4% in at least one year. We used the com-
mand gam() from the R package “mgcv” [64], with the formula response ~ s(predictor) 
and the settings bs = “cs”, method = “REML”. 
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3. Results 
3.1. Spatial-Temporal Dynamics 

In 2000, just a few dead trees were scattered across the catchment (Figure 3). By 2003, 
a few hot-spots of tree death appeared in the northwest, and in the following period, 2004–
2005, more trees died in a strip along the northwestern edge of the catchment. From 2006 
to 2007, tree death dominated in the southeast of the catchment, while from 2008 to 2009, 
trees died in a few of the areas that had been spared earlier. Only a few additional trees 
died between 2010 and 2015 (Figure 3). 

3.2. Spatial Autocorrelation: Moran’s I 
Although Figure 3 shows clear patterns in the temporal progress of tree death, there 

was significant spatial autocorrelation in every observed year, regardless of the phase of 
bark beetle attack (Supplementary Information, Table S3). Figure 4 shows how the spatial 
autocorrelation, estimated using the observed Moran’s I, coincided with new tree deaths, 
particularly in the first phase. After the climax of tree death, new mortality largely de-
clined, but the spatial autocorrelation between dead trees remained high. 

 
Figure 4. New mortality (red dots) and Moran’s I (black dots) on the position of newly dead trees 
over the years. Moran’s I was statistically significant for each year. 

The spatial correlation of the year of a tree’s death according to Moran’s I was highly 
significant (I between 0.002 and 0.1; p < 0.0001) for all years, contradicting our first hypoth-
esis of neutral dispersal. In more detail, the distribution of dead tall and dead small trees 
per year was also non-neutral (Supplementary Information, Table S4). This can be seen in 
Figure 3, with patches of early death in the south of the catchment. In contrast, in the 
north, where tree death was earliest and most extensive, a few islands of healthy spruces 
remained even until 2015 (Supplementary Information, Part B.4, Figure S6). The earliest 
tree death in the north might have resulted from windthrows, as suggested by Figure S7. 
It is, however, unclear where the bark beetle invasion came from. The windthrow damage 
within the Plešné catchment was largely in line with damage throughout the Šumava area 
(Figure S8). Only beginning with 2010 were there any spatial patterns discernible, with 
the north and south border of the catchment being closest to the nearest damage (Figure S9). 

We also checked Moran’s I on the rasters that were derived from the individual tree 
positions. The spatial resolutions are thus consecutively coarser, from 5 m cell size, over 
50 to 100 m cell size. Moran’s I was highest for the 5 m cell size, with maximum values of 
~0.8 (Figure 5). The values for the 50 and 100 m resolutions were similar to each other and 
in the range of Moran’s I for individual tree positions (compare with Figure 4). There were 
no clear trends with time, particularly for the 100 m resolution. 
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Figure 5. Moran’s I on the rasters derived from the position of newly dead trees over the years, 
dependent on cell sizes of 5 m, 50 m, and 100 m. 

3.3. The Most Influential Variables Predicting Tree Death 
The variables that had at least a 4% influence in at least one year of the observation 

are shown in Figure 6 and in Supplementary Information Part D. In brief, the major pre-
dictors were as follows: tall and small healthy conifers; tall and small dead conifers within 
distances of between 3 and 30 m; altitude; tree height; distance from the closest damage 
of the Senf and Seidl [46,47] raster data set for 2003; and coordinates of latitude and lon-
gitude. Full details are given in Table S5. 

Surprisingly, tree height was always the best predictor, even if its influence varied 
over the years. It was lowest in 2010, when the variables representing dead tall conifers 
within 3 m and healthy small conifers within 30 m were almost as important (Figures 6 
and S16; note, however, that the predicted tree death was negative, i.e., the model was not 
reliable). The individual property representing latitude was the third best predictor in 
2005 (Table S5). The other most influential predictors were mainly site-based, and were 
usually the second or third most important predictors (Figure 6 and Table S5). No stand-
scale predictor was important. Among the regional-scale predictors, only the distance 
from the disturbance raster of 2003 according to Senf and Seidl [46,47] was somewhat im-
portant, and only in 2008 (Figures 6 and S14), but the actual estimates of a tree to be dead 
or alive were negative, thus again unreliable. None of the variable influences stayed the 
same during the endemic phase (2000–2003) or during the epidemic phase (2005–2011), 
and there were no clear patterns over time. 
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Figure 6. The variable influence of those variables that had at least a 4% influence in at least one year 
in predicting tree death per year. The year 2015 is missing because no newly dead trees were rec-
orded in 2015, and thus there were no predictions to be made. Line type stands for the spatial scale, 
while symbols stand for predictors. The symbols show the type of tree category (c1 = tall and 
healthy; c2 = small and healthy; c4 = tall and dead; and c5 = small and dead), the buffer radius in m, 
e.g., 30 m, and the type of tree, where applicable (j = coniferous; l = deciduous), for the respective 
year. “dm_2003” stands for the distance to damage of the year 2003 in the Senf and Seidl [46,47] 
database. “Tre_hgh” signifies tree height (m). In the background, the endemic and epidemic phases 
as derived in Supplementary Information, Figure S3, are marked: green: endemic phase; red: epi-
demic phase; blue: recovery endemic phase. 

The regional scale only became important as a predictor at the peak of the epidemic 
phase, likely because the Czech forest state database did not contain information for the 
years before 2008. Note, however, that beginning with 2011, the estimated values were 
calculated to be below 0, and are thus not plotted in the figure—in other words, they were 
artifacts, and cannot be interpreted. Already in the data for 2007, there were gaps in the 
range for which predictions could be calculated, and short lines, not spanning the whole 
range of predictors, are the result. The year 2007 was also when considerable windfall was 
observed after storm Kyrill [38]. Thus, from 2007 on, dead trees not only reflected the bark 
beetle attack, but also the windfall. 

To exclude the possibility that the GBM method we used influenced the results, we 
also conducted random forest analyses from the same data sets as were submitted to the 
GBMs. Figures S19–S27 show that the general patterns were the same: tree height emerged 
as the most important variable in all years, followed by site-scale variables of tree densities 
within 30 m distances. 

For the variables that passed our 4% influence threshold we calculated GAM models 
on the 50 m and 100 m cell size rasters to test which of these models were statistically 
significant. In Figure 7, as an example, the results of the GAM models are given for the 
predictors shown to be most important by the GBM of 2000 (all other GAMs are in the 
Supporting Information). Not all predictors produced valid GAM models. An intermedi-
ate tree height of just under 20 m was correlated with the highest proportion of dead trees 
in 2000 (Figure 7). Both very low and very high numbers of tall healthy coniferous within 
30 m were linked to the lowest percentage of dead trees, while higher numbers of small 
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healthy coniferous within 10 and 30 m were associated with slightly lower percentages of 
dead trees. Altitude and northing showed nonlinear trends (Figure 7). 

 
Figure 7. General additive models (GAMs) for predicting the percentage of trees within a 50 m raster 
cell, estimated via kernel smoothing, that were dead in 2000, for 6 of the 12 variables passing the 4% 
importance threshold in the GBMs. In some cases, GAMs could not be calculated. GAMs for con-
secutive years on the 50 m raster can be found in the Supplementary Information, Figures S28–S35, 
and GAMs for the 100 m raster can be found in Figures S36–S44. 

Likewise, in 2003, the proportion of newly dead trees within a 50 m raster cell in-
creased with increasing tree height (Supplementary Information, Figure S28). In other 
years, patterns were less clear (Supplementary Information, Figures S29–S35). The per-
centage of dead trees sharply decreased in 2003 with an increasing density of tall healthy 
coniferous within 30 m (Supplementary Information, Figure S28). The pattern was similar 
in 2005, but in 2007 and 2008, i.e., during the epidemic phase, the percentage of dead trees 
sharply increased with an increasing density of tall healthy coniferous within 30 m. The 
behavior of all other variables also depended on the year of observation and the patterns 
were largely nonlinear. The same was true for GAM models of the 100 m rasters (Supple-
mentary Information, Figures S36–S44). 

4. Discussion 
The observation that individual- and small-scale tree properties are the most im-

portant factors determining a tree’s fate before, during, and after a bark beetle epidemic 
is only valid within a catchment. The outbreak/epidemic phase in 2005–2009 in the Plešné 
catchment itself was most likely triggered by windthrows in the vicinity of the catchment, 
i.e., on a regional scale. The effective dispersal of bark beetles is several hundred meters 
[7,15]. There is always some external trigger needed to start the outbreak, and it cannot 
start without some additional driver (e.g., a windthrow or severe drought). Individual- or 
site-scale factors shown to be influential within the Plešné catchment cannot by them-
selves trigger or prevent a bark beetle outbreak and epidemic. However, which tree sur-
vives within such an epidemic is decided on the individual or site scale. This may partially 
explain why different catchments react very differently to the presence of bark beetles.  
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In this study, individual-scale and site-scale predictors performed better at predicting 
tree death on the individual scale (with GBM) and on the stand scale (with GAM) than 
stand-scale or regional-scale predictors. In particular, tree height stood out as an im-
portant predictor.  

However, the patterns with which tree death could be predicted from predictors at 
different scales were largely non-linear in the GAM models. This is particularly clear for 
one of the best predictors, latitude—if latitude predicted tree death linearly, tree death 
would be most pronounced in either the north or the south. Instead, tree death usually 
occurred in clusters or nests, some of which were at some point at more northern points 
than others. Latitude’s prediction value thus occurred with several minima and maxima 
along this axis, but these “islands of death” did not show any trend in number or density. 
The reason that some predictors predicted the response in a more linear fashion in some 
years but not in others may lie in a particular variable’s interactions with other predictors. 
Depending on the range of an interaction partner in a respective year, their interaction 
may be stronger or weaker. 

The catchment studied here is small and a unilaterally oriented glacial karst, so we 
assumed that variables that proved most influential in other studies, e.g., mean growing 
season temperature [17,23] and mean growing season precipitation sum [65], would be 
less influential in this study. However, these climatic variables were not measured at 
enough points in the catchment for us to be able to extrapolate them to every tree in the 
whole catchment. Also, because of the unilateral orientation, they probably did not vary 
much in this small catchment, and would likely have correlated with the tested variables 
altitude, slope, and aspect. Soil moisture has been shown to be influential in a larger scale 
study [66], but like climatic variables, in this study, soil moisture was measured at too few 
points to extrapolate to every tree in the catchment. 

4.1. The Importance of Predictors at Different Scales during the Bark Beetle Attack Phases 
In contrast to our hypothesis, the importance of predictors at different scales (indi-

vidual scale versus site scale, stand scale, or regional scale) changed only slightly from 
one phase to the other. In the endemic phase in 2000, the highest percentage of dead trees 
within a 50 m raster cell was linked to an intermediate tree height. However, just before 
the main phase of tree death, in 2003, the highest trees were found in those raster cells 
with the highest proportion of tree death (Figure S28). Thus, it seems that the tallest trees 
were already attacked in 2003, and might actually have already been in the epidemic 
phase. 

During epidemic phases, bark beetles attack healthy trees when the trees are clus-
tered together [8]. This can be seen in 2007. Before 2007, the relationship between tall 
healthy coniferous trees within 30 m (c2_30m_j) and the proportion of trees dying (c4_xm, 
with x standing for distances between 5 and 30 m) had been largely negative (e.g., Figure 7). 
From 2008 on, the relationship between tall healthy coniferous trees within 30 m 
(c2_30m_j) and the % of dead trees was positive (e.g., Figure S31), and thus a high number 
of healthy conifers surrounding a coniferous tree did not prevent high numbers of trees 
from dying. This increase in tree death with an increasing number of healthy trees ceased 
in 2010, but confidence intervals for that year in most models were wide, i.e., patterns were 
not strong. The reason probably lies in the small number of healthy trees that had survived 
until 2010. 

Ips typographus, the species responsible for all infestations of Norway spruce stands 
in the Šumava National Park, has been shown to be deterred at 1.5 m from a source of 
pheromones and to prefer empty spots without pheromones within this small distance 
[67]. This is a density-regulating mechanism, since each tree can only support a limited 
number of beetles [67]. However, at 3 m from the source, only a few beetles preferred 
empty spots [67] and instead seemed to be attracted by the pheromone [68], but this pref-
erence rapidly decreased beyond a distance of 9 m [69]. In another study, within the first 
year of an outbreak, only 5% of fallen trees were affected, while the proportion was 50% 
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in the subsequent year [7]. The infestation thus was negligible in the first year after the 
disturbance, but started to be significant in the second year. While our study is not exper-
imental but observational, we confirmed that distances less than 10 m between a dead tree, 
i.e., a potential bark beetle source, and healthy trees may be important, particularly in the 
pre-epidemic phase. We found two variables within 3 m and one within 5 m to be among 
the thirteen most important variables, while stand-scale predictors were never significant, 
and regional-scale predictors were only significant in 2008. Another study at an adjacent 
site (and therefore with similar conditions) [70] used very high-resolution satellite and 
drone imagery to develop a blueprint that could be useful in predicting potential dispersal 
patterns that the bark beetles might follow. This blueprint should assist management in 
separating the unhealthy (attacked) trees from the healthy ones in the early epidemic 
phase, aiding in the protection of healthy trees [70]. Such an approach would likely be 
more efficient than a detailed manual characterization of individual trees as was done at 
present. 

4.2. Aerial Images Versus Satellite Remote Sensing 
In this study, we used a combination of manual appraisals of aerial imagery to derive 

individual tree properties, and satellite (LiDAR) data, to derive individual tree height. 
While the manual interpretation of the aerial imagery was particularly time-consuming, 
we think that this combination was necessary for clarifying which factors most influence 
the susceptibility to bark beetle attacks at the individual tree level. For other studies, it 
might be advantageous to combine LiDAR with very high-resolution remote sensing. 

4.3. Is the Site Scale the Most Influential Scale? 
We hypothesized that, during the epidemic phase, site-scale factors would be most 

important. We assumed that bark beetles would already be so widespread and abundant 
in the area that individual features would no longer play a role. However, the GBM vari-
able importance models showed that, in each year, and in each phase, the individual-scale 
variable tree height was the most important variable in predicting the death of a tree. An-
other individual-scale variable, latitude, was among the most important predictors, but 
did not play a discernible role. However, the second and third most important variables 
were indeed site-scale variables, namely, the densities of healthy or dead trees within var-
ying distances. Interestingly, aspect did not play a role, in contrast to, e.g., a study in the 
Dinaric mountain forests of Slovenia [71], even though the Plešné catchment has steep 
slopes and a mosaic of aspects which would be expected to influence tree susceptibility 
and resistance. 

4.4. Does the Density of Healthy Trees on the Small Scale Protect Trees? 
Among the influential variables in the GBM model on the site scale were tall healthy 

coniferous trees within 3 and 30 m, respectively, and small healthy coniferous trees within 
5, 10, and 30 m. The hypothesized negative relationship with the percent of dead trees 
within a 50 or 100 m raster cell in the GAM model was, however, present only in a few 
years, e.g., on the 50 m scale response. Such negative correlation between the increasing 
density of healthy trees and the percent of dead trees within a raster cell might indicate, 
e.g., a diverse root microbial community protecting trees until an epidemic phase. For 
instance, the roots of healthy trees are surrounded by a diverse network of mycorrhizal 
fungi that cycle nutrients to and from the tree roots [72,73]. This should be all the more 
effective within a short range between living trees, i.e., when the density of living trees is 
high. After bark beetle attacks, symbiotic root fungi and most enzyme activity has been 
shown to decrease and endophytes increase [27], which may negatively affect spruce 
[74,75]. The disturbance of trees’ phloem flow to the root, transporting photosynthates, 
seems to be responsible for the disappearance of ectomycorrhizal fungi [76], disrupting 
the nutrient transport to trees [77]. 
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Another factor that might have been responsible for the small-scale variables and in-
dividual-tree characteristics being more important than larger scale variables, is that trees 
in the Šumava National Park have already been stressed by increasing temperatures (e.g., 
[43]). Previous studies have shown that tree health estimated from satellite images (Land-
sat) was already decreased prior to the bark beetle attacks (Figure S3 and [45,78]), possibly 
making this area more susceptible to bark beetle attacks than areas with healthier trees. 

The fact that we found patterns at the 100 m scale to be less important than at the 50 
m scale, in contrast to other studies that have shown stand scales as large as 180 m to be 
decisive for stand health [23], is probably due to the spatial extent of the data. In our data 
set, 100 m is probably too large to represent a homogenous stand, because the buffer zone 
around the catchment, within which trees were counted by Fluksová et al. [20], was less 
than 100 m wide, and so the densities at the catchment margins may have been underes-
timated. Therefore, our results including variables and rasters at a 100 m spatial resolution 
must be evaluated cautiously. 

4.5. Are Spatial Scales Useful for Discussing an Ecological Effect? 
From an ecological point of view, the differentiation of spatial scales may seem arti-

ficial and thus unhelpful. A tree is attacked under two conditions: (1) there is a population 
of beetles and (2) a tree is susceptible and not able to defend itself. The presence of a beetle 
population depends on the number of parent beetles and their dispersal, which is a func-
tion of climate. The susceptibility of a tree is a function of climate, tree age and size, and 
local stem density. Thus, climate is an important factor which also varies locally. However, 
within the small Plešné catchment, climatic conditions are similar, except for air tempera-
ture that decreases with increasing elevation. Hence, we used longitude and latitude as a 
proxy for small-scale effects, and indeed, based on the statistical analyses, they played a 
minor role in determining a tree’s fate. We had expected slope and aspect to have more of 
an influence on a tree’s death or survival, since they not only vary more than climate in 
the catchment, but also predetermine incoming solar radiation to the forest and affect air 
and soil temperatures. However, we found coordinates to have stronger effects, probably 
because bark beetles mostly spread from the southwest to the rest of catchment. 

Density and tree age are not always homogenous across stands, so we considered 
density and tree age not as a stand-scale predictor, but as a site-scale or individual-scale 
predictor, respectively. However, most drivers act on more than one scale. We found tree 
properties and their location (specifically latitude) to be more important in determining 
an individual tree’s fate in this small catchment than the distance to the next patch or 
raster cell of damage. Generalizations are difficult, but for forest management, it is im-
portant to know at which spatial scale an intervention has which effects. 

4.6. Salvage Logging for Managing Bark Beetle Attacks 
Salvage and sanitation logging consist of taking dead trees (a potential infestation 

nucleus) out of an area and are usually performed at a scale of hectares to remove stepping 
stones for pest dispersal. Our study, however, shows that on a catchment scale, the dis-
tance to the closest disturbance, i.e., to the closest stepping stone, is of less importance 
than features at the individual- and site-scale, i.e., within 30 m. This has important impli-
cations for forest management. In an area where trees are already stressed by high tem-
peratures and where bark beetles are already present, salvage logging may not be an ef-
fective measure. Instead, management might focus on improving the condition of trees, 
particularly the tallest ones, to prevent them from becoming attacked. For instance, the 
thinning of trees within planted stands might improve individual fitness by reducing 
competition, which gives individual trees an advantage in withstanding infestation [79]. 
In contrast, salvage logging has been shown to increase the susceptibility to windthrows 
at newly created stand borders [80]. In addition, microclimatic conditions at forest mar-
gins, e.g., higher bark temperatures, and olfactory signals from standing edge trees have 
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been shown to favor beetle swarming [81]. Thus, new forest margins, as a result of salvage 
logging, may actually facilitate bark beetle infestation into previously unaffected stands. 

5. Conclusions 
The spatial patterns of tree death following a bark beetle outbreak in the Plešné catch-

ment showed clear dependences on individual tree properties and on tree densities at the 
site scale (within 30 m). Stand-scale features (50–100 m) did not predict tree death, and the 
regional scale (>100 m) was of minor importance. Implications for forest management in 
similar catchments include that individual tree survival during a bark beetle infestation 
can be achieved by avoiding hectare-scale salvage logging and by taking care that as many 
trees as possible, including deciduous trees and saplings, survive. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/f15050803/s1, Supporting_Information.docx, containing Fig-
ure S1: Terrain elevation derived from the two LiDAR campaigns (red dots) within the basin (darker 
blue). Encircling the LiDAR data with a minimum convex polygon (light blue), and relating this 
polygon to the catchment area yields that the coverage was about 90.1% of the catchment area.; 
Figure S2: Tree height derived from the two LiDAR campaigns (white dots) within the basin (blue). 
The original source points for vegetation (defined as a reflection other than ground) cover a larger 
area than the terrain elevation (Figure S1), and they cover almost the whole basin area.; Table S1: 
Number of trees per category present in the basin in the observed time segments according to their 
health and height conditions. Reproduced with the authors’ permission from Table 1 [20]. Table S2: 
Number of trees that had been classified as “dead” (either “dead standing”, “dead lying”, or 
“stump”; compare Table 1) for the first time in a year. ; Table S3: Since the number of dead trees 
given for a year in Table S2 refer to irregular time spans, here, the yearly rate was estimated by 
dividing the number of dead trees per period by the number of years this period lasted, starting 
with 2003 because the deaths having been observed in the year 2000  are cumulative.; Figure S3: 
Catchment scale Forest Infrared index of damage, cFII ([45]; coloured dots; repeated in each line), 
in connection with the different tree counts from the Fluksová data base (black dots). Based on these 
two measures, we divided the observed time span into a pre-damage phase (green shadow), a dam-
age phase (red shadow), and recovery phase (blue shadow).; Table S4: Moran’s I spatial pattern test 
on the distribution of tall dead trees (upper half) and small dead trees (lower half) versus all other 
tree types.; Table S5: Relative information of GBM per year. 
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